
X/HEC Datascience for Business
2023/2024 Mathurin Massias, Badr Moufad

Lab no 1 : Introduction: Python, Numpy, Pandas

- Evaluation -

The Lab is done by pairs. There is no exception. On Moodle you have a section called “Lab 1
submission” for the first class. Each student in the pair must upload his/her notebook, with the name
constructed as fistname1_LASTNAME1_firstname2_LASTNAME2.ipynb, where you have substituted your
respective first and last names. Ex : mathurin_MASSIAS_anne_GAGNEUX.ipynb. There is no evaluation
if you don’t respect this. If code is shared between groups, both groups get 0. Read the intro slides
on what’s expected of you in the labs.

Important preliminary remarks
We use jupyter notebook for all practical sessions. Some important points to remember :

- Loading -

import math # import a package
import numpy as np # import a package under an alias
from sklearn import linear_model # import a submodule
from os import mkdir # import a peculiar function

- Using standard help -

When facing a difficulty, you are strongly encouraged to refer to the online documentation of pandas,
numpy, etc. It should become a reflex to look for the answer in the doc or on stackoverflow.

linear_model.LinearRegression? # to get some help on the LinearRegression object

- Package versions -

print(np.__version__) # to get a package version

- Figures -

import matplotlib.pyplot as plt # import the plt function of package matplotlib
%matplotlib inline # tell Jupyter to plot figures inside notebook

page 1



Strings
1) From a string containing all the alphabet letters, generate the string cfilorux using slicing. Do

the same for the strings vxz and zxvt. Don’t type the alphabet yourself, use the string module.
2) Declare a string variable " XHEC DataScience for Business ". Make it all lowercase. Remove

spaces at the beginning and at the end, but not between words. Replace all e’s with E’s.
3) Display the number π with 9 decimal digits. Don’t cast a number to string, and don’t use round :

use Python’s string formatting instead (either the format method, either the % operator).
4) Count the number of occurrences of each character in the string s = "HelLo WorLd!!". (in real

life, you should use a collections.Counter ; here, you are asked to code the method yourself).
Output a dictionary that to each character associates the number of occurrences in this string. In
this question, we consider that lower and upper case characters are the same (e.g. your dictionary
should not have both a L and a l entry).

Fast computations with numpy ; basic plots.
Hint : useful functions : np.arange, np.allclose, np.all, np.linalg.norm for instance. The

whole numpy.linalg module contains interesting Linear Algebra functions. numpy.random contains func-
tions to generate arrays of (pseudo-) random numbers.

In all this section, unless asked explicitly, you cannot use for/while loops (they are slow in native
python).

5) Compute 0.1 + 100 - 100. Using ==, check if it is equal to 0.1. Comment. Compare the two
floating point numbers again with an appropriate numpy function.

6) Create a list (resp. an array) containing all square numbers from 1, 4, ... to 121, using a for loop
(resp. only numpy). Why should you use arrays instead of loops whenever possible ?

7) Create an array containing integers from 2 to 14 by step of 3 (2, 5, 8, ...). Create an array with 15
equispaced valued from 0 to 1 included. Use numpy built-in functions.

8) Compute 2
ś8

k“1
4k2

4k2´1 (approximate 8 by a large number n) using a for loop. Propose a ver-
sion without loop, using only numpy (see numpy.prod). Measure the time taken by both versions
using time.time(). You should display the results with a relevant number of significant digits, e.g.
not 0.002487976589749873 seconds. Use the ipython magic %timeit again to measure time of one
version. Why is it better than time.time ?

9) (row and column vectors, aka numpy only knows 1D arrays) Compute the dot product of
np.arange(5) and np.ones(5). What is the shape of np.arange(5) ? How many dimensions does
this array have ? What is the shape of its transpose (use .T) ? What does transposing 1D arrays
do ?

10) What does reshape do in M = np.arange(12).reshape(2, 6) ? What does M[:, ::3] do ? What
happens when you do np.arange(3) * np.arange(4)[:, np.newaxis] (this powerful tool is
known as broadcasting)

11) Create a random matrix M P R5ˆ6 with coefficients taken uniformly (and independently) in r´1, 1s.
Substract to each even column of M (say M[:, 0] is even), twice the value of the following (uneven)
column.

12) Replace the negative values in M by 0. Compute the mean of each row of M . Substract to each
row of M , its mean.

13) Create a random matrix M P R5ˆ10 with coefficients taken uniformly (and independently) in r´1, 1s.
Test whether G “ MJM is symmetric semi-definite positive, and that its eigenvalues are strictly
positive. Compute the rank of G. Compute the Euclidean norm of G. Compute the operator norm
of G (aka spectral norm, aka Schatten 2-norm). Compute the standard deviation of each column of
G.

14) Plot the functions x ÞÑ xd on the interval r´1, 2s for d P t2, 3, 4u with a decent resolution. Put a
xlabel, a ylabel, legend the 3 curves with d “ 2, d “ 3, d “ 4 respectively. Put a title.

page 2



Numpy advanced behavior

Numpy broadcasting
In this exercise, you can use neither lists nor for loops. You should use only numpy’s operations,

which are fast. An introduction to broadcasting is available here : https://numpy.org/doc/stable/
user/basics.broadcasting.html.

15) Create an array with integers 1, 3, ..., 19. Subtract its mean to it. Observe than you can thus
subtract a number to an array, even though they do not have the same shape. Create an array with
3 lines and 4 columns, such that arr[i, j] = 4 * i + j (it thus contains integers from 0 to 11).
reshape will help.

16) Now, we subtract vectors to 2D arrays, using broadcasting. Take the previous (3, 4) array, and
subtract its column wise mean to it (easy). Subtract its row wise mean to it (technically more
challenging the first time, you can add an axis to a 1D array with arr[:, None]).

17) Using broadcasting and np.arange, create an array of shape (3, 5) such that arr[i, j] = i * j.

Value and reference types
18) Create a variable a equal to 1000. Check the address in memory of the variable with the builtin id

function. Create a second variable b equal to 1000. What is the address in memory of b ? Create a
third variable c equal to a, check its address in memory. Do a += 1. How does it affect the values
of the three variables ? Why ?

19) Do the same but this time using a = np.array([0, 1]), b = np.array([0, 1]), c = a. What is
going on ?

20) (passing by value/passing by reference) Define def f(a): a += 1. Call it on a = 1,
a = np.ones(10). Check the value of a after calling f on it.
What’s the reason for this behavior ?

21) For two arrays a = np.zeros(10), b = np.ones(10), what’s the difference between doing a = b
and a[:] = b ? What’s the difference between a = a 1+ and a = 1+ ?

page 3

https://numpy.org/doc/stable/user/basics.broadcasting.html
https://numpy.org/doc/stable/user/basics.broadcasting.html

